Cyber-Physical System (CPS)

Cyber-Physical System (CPS)

A cyber-physical system (CPS) or intelligent system is a computer system in which a mechanism is controlled or monitored by computer-based algorithms. In cyber-physical systems, physical and software components are deeply intertwined, able to operate on different spatial and temporal scales, exhibit multiple and distinct behavioral modalities, and interact with each other in ways that change with context.

 CPS involves transdisciplinary approaches, merging theory of cybernetics, mechatronics, design and process science. The process control is often referred to as embedded systems. In embedded systems, the emphasis tends to be more on the computational elements, and less on an intense link between the computational and physical elements. CPS is also similar to the Internet of Things (IoT), sharing the same basic architecture; nevertheless, CPS presents a higher combination and coordination between physical and computational elements.



Examples of CPS include smart grid, autonomous automobile systems, medical monitoring, industrial control systems, robotics systems, and automatic pilot avionics.Precursors of cyber-physical systems can be found in areas as diverse as aerospace, automotive, chemical processes, civil infrastructure, energy, healthcare, manufacturing, transportation, entertainment, and consumer appliances.


OVERVIEW


Unlike more traditional embedded systems, a full-fledged CPS is typically designed as a network of interacting elements with physical input and output instead of as standalone devices. The notion is closely tied to concepts of robotics and sensor networks with intelligence mechanisms proper of computational intelligence leading the pathway. Ongoing advances in science and engineering improve the link between computational and physical elements by means of intelligent mechanisms, increasing the adaptability, autonomy, efficiency, functionality, reliability, safety, and usability of cyber-physical systems. This will broaden the potential of cyber-physical systems in several directions, including: intervention (e.g., collision avoidance); precision (e.g., robotic surgery and nano-level manufacturing); operation in dangerous or inaccessible environments (e.g., search and rescue, firefighting, and deep-sea exploration); coordination (e.g., air traffic control, war fighting); efficiency (e.g., zero-net energy buildings); and augmentation of human capabilities (e.g. in healthcare http://monitoring and delivery).


Mobile cyber-physical systems

Mobile cyber-physical systems, in which the physical system under study has inherent mobility, are a prominent subcategory of cyber-physical systems. Examples of mobile physical systems include mobile robotics and electronics transported by humans or animals. The rise in popularity of smartphones has increased interest in the area of mobile cyber-physical systems. Smartphone platforms make ideal mobile cyber-physical systems for a number of reasons, including:

  • Significant computational resources, such as processing capability, local storage
  • Multiple sensory input/output devices, such as touch screens, cameras, GPS chips, speakers, microphone, light sensors, proximity sensors
  • Multiple communication mechanisms, such as http://WiFi, 4G, EDGE, Bluetooth for interconnecting devices to either the Internet, or to other devices
  • High-level programming languages that enable rapid development of mobile CPS node software, such as Java, http://http://C#, or JavaScript
  • Readily available application distribution mechanisms, such as Google Play Store and Apple App Store
  • End-user maintenance and upkeep, including frequent re-charging of the battery

Comments

Popular Posts